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Abstract—In this paper, we study the problem of recovering
the direction-of-arrival in difficult scenarios of highly correlated
source signals and only few available snapshots. Recently, the par-
tial relaxation framework has been proposed as an optimization-
based technique that accounts for the existence of multiple signals
while performing the estimation task through a simple spectral
search. Its performance is superior to conventional methods but
tends to deteriorate drastically when the source signals are highly
correlated due to information loss associated with the relaxation.
On the other hand, from a compressed sensing point of view,
the recently proposed sparse row-norm reconstruction method
formulates the parameter estimation problem as a compact
ℓ2,1-mixed-norm minimization problem. One of its prominent
advantages is its robustness under highly correlated sources
and a low number of snapshots; an intrinsic bias induced
by the ℓ1-norm approximation, however, affects the estimation
performance. In this paper, we propose a method that integrates
the ℓ2,1-mixed-norm minimization formulation into the spectral
search of the partial relaxation estimators. Simulation results
show that the proposed estimator has superior error performance
in difficult scenarios and alleviates the disadvantages of both
methods.

Index Terms—DOA estimation, partial relaxation, sparse signal
recovery, joint sparsity, mixed-norm minimization

I. INTRODUCTION

Estimating the Direction-of-Arrival (DOA) of the incoming
source signals from data collected at a sensor array is an
important and long-standing problem in many fields of engi-
neering. Concrete examples include wireless communication,
seismic exploration, and automatic monitoring [1], [2], [3].

Numerous approaches have been developed in the past,
with different focuses on improving computational efficiency,
applicability to general array geometries, increasing resolution
capability, or enhancing robustness in difficult scenarios. For
example, the Maximum Likelihood Estimator (MLE) [4], [5]
has remarkable error performance in both the threshold and the
asymptotic region by exploiting the full statistical information,
but its application in practice is greatly hindered due to the
high computational cost. The root-MUSIC method [6] and the
ESPRIT method [7] avoid any spectral search and reduce the
computational cost by explicitly utilizing the array structures.

Recently, a new approach, namely the Partial Relaxation
(PR) method [8], [9], has been proposed to tackle the problem
of DOA estimation from the perspective of relaxation opti-
mization. In contrast, the SPARse ROW-norm reconstruction

(SPARROW) method [10] has been proposed as an efficient re-
formulation of the classical multiple measurement problem of
Malioutov [11]. The PR method transforms a multidimensional
optimization problem into a simple spectral search by partially
relaxing the manifold structure under consideration. Theoret-
ical analysis and simulations show that the PR estimators
have superior performance in many setups, but a theoretical
gap exists between its Cramér-Rao Bound (CRB) and that
of the MLE when the source signals are correlated [12],
[13], [14]. In contrast, the SPARROW method recovers the
DOAs by reconstructing a row-sparse signal matrix from a
densely sampled dictionary manifold. It makes no assumptions
on the source signal covariance matrix. However, its error
performance tends to saturate in the asymptotic region due
to a bias induced by the sparse regularization.

In this paper, we propose a novel DOA estimation method
that improves the frequency resolution and alleviates the intrin-
sic bias of the SPARROW estimator and evidently diminishes
the weakness of the PR estimators under correlated sources.
Specifically, the proposed method recovers the DOAs by
performing a spectral search on the solution of the SPARROW
estimator that employs a reduced regularization parameter. We
remark that, although only the Uniform Linear Array (ULA)
structure is considered throughout the paper, the method can be
easily generalized to cope with other array geometries, e.g.,
shift-invariant or fully-augmentable arrays, by incorporating
the correspondingly designed SPARROW estimator [15], [16].

This paper is organized as follows. Section II introduces
the signal model for the DOA estimation problem. In Section
III, we briefly review the PR framework and the SPARROW
method. Based on the above two methods, in Section IV, we
propose a novel DOA estimator. Section V contains simulation
results, and the concluding remarks are given in Section VI.

Notation: Matrices, vectors, and scalars are denoted by
boldface uppercase letters X , boldface lowercase letters x,
and regular letters x, respectively. The symbols p¨q⊺, p¨qH,
and p¨q´1 denote transpose, Hermitian transpose, and inverse,
respectively. The expectation operator is represented by Et¨u.
∥¨∥F stands for the Frobenius norm and ∥¨∥2 is the ℓ2-norm.

II. SIGNAL MODEL

In this section, we define a signal model for estimating
DOAs of incoming signals with data collected at a sensor



array. Consider a ULA of M omnidirectional sensors that
receives narrowband signals located in the far-field of the
array. There are L impinging source signals whose DOAs
are denoted by θ “ rθ1, . . . , θLs⊺. We assume the number
of source signals L to be known. At time instant t, the receive
signal at the sensor array is

yptq “ Apθqxptq ` nptq, (1)

where yptq P CM and xptq P CL are the received signal
vector and the source signal vector, respectively, demodu-
lated to baseband. Matrix Apθq “ rapθ1q, . . . ,apθLqs P

CMˆL is the steering matrix with each column apθiq “

r1, e´jπ sinpθiq, . . . , e´jpM´1qπ sinpθiqs⊺ being the sensor array
responses for DOA θi for i “ 1, . . . , L. Vector nptq P CM

denotes independent and identically distributed circular and
spatio-temporal white Gaussian noise with covariance matrix
Rn “ EtnptqnptqHu “ σ2IM , where σ2 is the noise power at
each sensor. We assume that the geometry of the sensor array
involves no ambiguity and the steering matrix Apθq is always
of full rank for all possible DOAs θ [17].

In the case of multiple snapshots collected at time t “

1, . . . , N , the signal model in (1) can be compactly expressed
as Y “ ApθqX ` N with Y “ ryp1q, . . . ,ypNqs, X “

rxp1q, . . . ,xpNqs, and N “ rnp1q, . . . ,npNqs being the
receive signal matrix, source signal matrix, and noise matrix,
respectively. We apply a stochastic signal model and assume
that the source signals xptq are samples of a stationary process
with zero mean, i.e., Etxptqu “ 0. Let Rx “ EtxptqxptqHu

denote the source covariance matrix. The receive covariance
matrix, denoted by Ry , is then given by

Ry “ EtyptqyptqHu “ ApθqRxApθqH ` σ2IM . (2)

In practice, the receive covariance matrix is not known and,
therefore, is often replaced by the sample covariance matrix

pRy “ 1
NY Y H.

III. REVIEW OF PR AND SPARROW
We start by briefly reviewing the two methods underlying

our proposed method in Section IV.

A. The Partial Relaxtion Framework

The conventional multi-source estimation is formulated as

pθ “ argmin
θ

fpApθq,Y q, (3)

where f is a general multi-source cost function, e.g. the
deterministic maximum likelihood cost function [5], and Apθq

is the multi-source array manifold. Under the partial relaxation
framework, by maintaining only the manifold structure of the
first column apθ1q of Apθq and relaxing the manifold structure
of the remaining sources rapθ2q, . . . ,apθLqs, problem (3) is
transformed into a spectral search as

pθ “ L argmin
θ

min
BPCMˆpL´1q

fpapθq,B,Y q,

with L argmin denoting the set of arguments where the
searched spectrum takes the L-deepest minima [8].

On the one hand, by partially relaxing the L-source array
manifold, the computational cost of the L-dimensional search
is remarkably reduced to that of a simple one-dimensional
spectral search, while the estimation accuracy is maintained
via accounting for multiple sources. On the other hand, the
relaxation induces statistical information loss and, hence, the
CRB of the PR framework is generally higher than the
conventional CRB [9]. In particular, the PR estimators tend
to degrade severely when the sources are highly correlated or
when the number of available snapshots is very low.

The Partially Relaxed Unconstrained Covariance Fitting
(PR-UCF) estimator is obtained under the PR framework as

pθPR-UCF “ L argmin
θ

min
σ2
xě0

řM
k“L

λ2
kp pRy ´ σ2

xapθqapθqHq

based on the conventional unconstrained covariance fitting
method. It has the advantage of being applicable to general
array geometries. Other DOA estimators, e.g., the Partially
Relaxed Deterministic Maximum Likelihood (PR-DML) es-
timator based on the conventional deterministic maximum
likelihood estimator, also have been derived in [8]. For the
sake of conciseness, we refrain from listing them here.

B. The SPARROW Method

In this subsection, we briefly review the SPARROW method
that is developed in the field of sparse signal reconstruction.

Sparse signal reconstruction techniques are applied to the
DOA estimation problem by recovering a sparse representation
of the signal matrix with an overcomplete dictionary matrix
sampled from the Field-of-View (FOV). Specifically, consider
the classical ℓ2,1-mixed-norm minimization problem

min
ZPCKˆN

1
2 ||ApνqZ ´ Y ||2F ` λ

?
N ||Z||2,1, (4)

where ν “ tν1, . . . , νKu is the densely and sufficiently
sampled FOV with K " L and θi P ν, for i “ 1, . . . , L,
Z “ rz1, . . . ,zKs⊺ is the row-wise sparse signal matrix, and
Apνq “ rapν1q, . . . ,apνKqs P CMˆK is an overcomplete
dictionary matrix. The ℓ2,1-mixed-norm is defined as

∥Z∥2,1 “
řK

k“1∥zk∥2
and λ ą 0 is the regularization parameter inducing row-
sparsity in matrix Z. The DOAs are then estimated from the
solution pZ “ rpz1, . . . , pzKs⊺ of (4) by

tpθiu
L
i“1 :“ tνk : ||pzk||2 ‰ 0, k “ 1, . . . ,Ku.

It is proved in [10, Theorem 1] that problem (4) is equivalent
to the convex problem

min
SPDK

`

Tr
´

pApνqSApνqH ` λIM q´1
pRy

¯

` TrpSq, (5)

where DK
` is the set of K ˆK nonnegative diagonal matrices.

Let s1, . . . , sK ě 0 be the diagonal entries of S. The solutions
of (4) and (5) are related by

pZ “ pSApνqHpApνq pSApνqH ` λIM q´1Y ,

psk “ 1?
N

||pzk||2 for k “ 1, 2, . . . ,K.



The SPARROW formulation in (5) requires a densely
sampled grid in order to reduce any estimation bias caused
by spectral leakage effects, which results in a high com-
putational cost. When the array geometry forms a uniform
linear structure, problem (5) can be reformulated to allow
for a gridless estimation. In the case of a uniform linear
array with M sensors, the overcomplete dictionary matrix
Apνq has a Vandemonde structure. The convex combination
of apνkqapνkqH forms a positive semidefinite Toeplitz matrix

T “ ApνqSApνqH “
řK

k“1 skapνkqapνkqH P T M
` , (6)

where T M
` is the set of M ˆM positive semidefinte Toeplitz

matrices. Without loss of generality, the nonnegative coeffi-
cients s1, . . . , sK are assumed to be sorted in descending order.
By the Caratheodory theorem [18], [19], if the number of
distinct DOAs ν1, . . . , νr with positive coefficients s1, . . . , sr
does not exceed the number of sensors, i.e., r ď M , then the
mapping between s1, . . . , sr and the matrix T in (6) is unique
and, moreover, r “ rankpT q. Thus, a straightforward gridless
extension of problem (5) is jointly learning a dictionary, which
can be equivalently reformulated as the convex problem [20]

pT “ argmin
TPT M

`

Tr
´

pT ` λIM q´1
pRy

¯

`
1

M
TrpT q. (7)

The DOAs ν1, . . . , νK are then recovered from the solution
pT in (7) according to the Vandermonde decomposition in (6),
which can be obtained by, e.g., the linear prediction meth-
ods [21]. In addition, the convex problems (5) and (7) can
be solved by a generic semidefinite program solver such as
MOSEK [22].

IV. MOTIVATION AND PROPOSED METHOD

Both the SPARROW method in (7) and the PR estimators
discussed in Section III-A have their disadvantages. An intrin-
sic bias is introduced in the SPARROW method in (7) by the
row-sparsity regularization, whereas the PR estimators tend to
degrade drastically when the source signals are highly corre-
lated or when few snapshots are available. In this section, we
propose a novel DOA estimator that integrates the SPARROW
formulation (7) into the spectral search of the PR framework
and alleviates the disadvantages of both methods.

Specifically, the proposed method consists of the two steps:
Step 1: solve the gridless SPARROW problem in (7) with a

reduced regularization parameter as specified below;
Step 2: with the additional knowledge of the model order L,

recover the DOAs by a spectral search on the solution
pT of the gridless SPARROW using one of the PR
estimators in [8].

In the case of correlated source signals, the source covariance
matrix Rx in (2) is not diagonal, and, consequently, the source
signals remain correlated in the receive covariance matrix Ry

in (2). In contrast, a diagonal structure persists in the sparse
matrix S in (5). Furthermore, by the Vandermonde decomposi-
tion in (6), the sources are decorrelated in the solution pT of the
gridless SPARROW in (7). Thus, our proposed method aims

at addressing the shortcoming of PR estimators for correlated
sources, by first decorrelating the sources using the gridless
SPARROW.

On the other hand, since the information on the number of
sources is known and utilized by the PR estimators in Step 2,
we reduce the sparsity-promoting parameter λ for the gridless
SPARROW in Step 1 in order to reduce the bias, which,
consequently, leads to solutions of higher rank. In particular,
we employ the heuristic tuning rule given in [10] with an
additional reduction factor, i.e.,

λ “ Cλ

a

σ2M logM, (8)

where the reduction factor Cλ is typically chosen between
0.4 and 0.6. In contrast, Cλ “ 1 is used by the SPARROW
estimator reported in [10].

In Step 2, instead of computing the Vandermonde decom-
position of the Toeplitz solution pT , the proposed method
performs a spectral search on pT with a PR estimator. We
remark that, if the solution pT of SPARROW in (7) has a
rank of L, i.e., pT only contains L nonzero components in the
Vandermonde decomposition in (6), then the spectral search
of PR returns the same DOAs as those in the Vandermonde
decomposition due to the uniqueness of the Vandermonde
decomposition. In this case, the proposed method reduces to
the original gridless SPARROW. This is another motivation
for the reduction of the sparsity-promoting parameter λ in the
first step of our proposed method.

In particular, we consider the following estimator, termed
SP-PR-UCF, derived under the framework proposed above
based on the PR-UCF estimator in Section III-A:

pθSP-PR-UCF “ L argmin
θ

min
σ2
xě0

řM
k“L

λ2
kp pT ´ σ2

xapθqapθqHq.

We remark that other DOA estimators can also be derived
under our proposed framework in the same manner based on
different PR estimators.

V. SIMULATION RESULTS

In this section, we conduct numerical experiments to eval-
uate and analyze the performance of the proposed method.
Specifically, we compare, based on Monte-Carlo trials, the
error performance of the proposed method with that of the
PR estimator, the root-MUSIC method, the SPARROW esti-
mator (7) with the original regularization parameter, the SPAR-
ROW estimator (7) with the same regularization parameter as
the proposed method, and the root-MUSIC method applied to
the Toeplitz matrix solution of (7) with the same regularization
parameter as the proposed method (termed SP-root-MUSIC).
The signal-to-noise ratio (SNR) is defined as SNR “ 1{σ2.
To evaluate the performance of each method, we compute the
root-mean-square-error (RMSE) as

RMSE “

b

1
NRL

řNR

i“1

řL
l“1pθ̂

piq
l ´ θlq2,

where NR is the total number of Monte-Carlo trials, pθpiq “

rθ̂
piq
1 , . . . , θ̂

piq
L s⊺ contains the estimated DOAs at the ith trial,

and θ “ rθ1, . . . , θLs⊺ is the true DOAs. For the SPARROW
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Fig. 1. RMSE vs SNR for correlated sources with N “ 40.

estimator, only the DOAs of the L leading components in the
Vandermonde decomposition in (6) are taken into account in
the evaluation of RMSE. The number of Monte-Carlo runs in
the following simulations is 200.

A. Highly-correlated Source Signals

In the first simulation, we study the error performance of
various estimators when the sources are highly correlated. Two
sources with the correlation factor ρ “ 0.95 are placed closely
at 45˝ and 50˝. We use a uniform linear array of size M “

10. For the proposed method, we choose Cλ “ 0.4 in the
heuristic formula (8). We exclude 2% of the runs with the
largest estimation errors before calculating RMSE. Simulation
results are presented in Fig. 1-3.

From Fig. 1-3, we observe a clear gap between the CRB of
PR estimators and the conventional CRB. The PR estimator ex-
hibits better error behavior than the root-MUSIC method in the
threshold region and converges to PR-CRB at relatively high
SNR values or snapshot sizes. In comparison, in Fig. 1 and
Fig. 2, the SPARROW method with the original regularization
parameter outperforms the PR estimator, but its RMSE tends to
saturate due to the bias induced by the ℓ1-norm approximation
for the sparsity. The proposed estimator is superior to the PR
estimator and the SPARROW method, even though its error
performance is still affected by an intrinsic bias. Note that,
in Fig. 1 as the noise power decreases, the regularization
parameter difference between the original SPARROW method
and the proposed method gets smaller accordingly. In Fig. 2,
where SNR is fixed, it is clearly seen that the RMSEs of the
proposed estimator have lower values than those of the SPAR-
ROW method with the original regularization parameter after
both have saturated. By applying the root-MUSIC method to
the Toeplitz matrix solution of (7) with the same regularization
parameter as the proposed method, the error rate achieves the
CRB at higher SNR values or snapshot sizes in Fig. 1 and
Fig. 3. In Fig. 3, the SPARROW estimator cannot separate two
sources anymore, whereas the proposed estimator still achieves
the best estimation quality amongst the compared methods.
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Fig. 2. RMSE vs N for correlated sources with SNR“ 5dB.

B. Few Snapshots

This simulation compares the performance of the afore-
mentioned DOA estimators in the scenario where only a few
snapshots are available. Two uncorrelated sources are placed
at ´30˝ and 30˝. The number of snapshots is N “ 3, which is
smaller than the array size M “ 6. For the proposed method,
we choose Cλ “ 0.4. We exclude 2% of the runs with the
largest estimation errors before calculating RMSE. In Fig. 4,
the estimation errors of different estimators are depicted as a
function of SNR.

It can be observed in Fig. 4 that the proposed method
is superior to the PR estimator and the original SPARROW
estimator. It has the lowest error rates and converges to the
CRB at around SNR “ 2 dB.

The performance differences in these two simulations lead
to the conclusion that the proposed estimator exhibits superior
robustness with respect to highly-correlated source signals
and very low snapshots and achieves an improved error
performance and frequency resolution. We remark that in
both simulations, other PR estimators than PR-UCF are also
tested under the proposed framework and they demonstrate
comparable or worse estimation performance than the SP-
PR-UCF estimator. For the sake of conciseness, we do not
present them here. Finally, the procedure of applying the root-
MUSIC method to the Toeplitz matrix solution of (7) with
the same regularization parameter as the proposed method
achieves the CRB at higher SNR value or snapshot size
compared to the proposed estimator. Moreover, it is only
applicable to uniform linear arrays. The proposed method, in
comparison, can be extended to other array geometries, e.g.,
fully augmentable arrays, by employing the variant of gridless
SPARROW derived with a co-array [15, (17)].

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a method that integrates the sparse
signal reconstruction techniques under the partial relaxation
framework. Simulation results in two difficult setups with
highly-correlated sources and very few snapshots show that
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the proposed method alleviates both the intrinsic bias of
sparse signal reconstruction techniques and the weakness of
the partial relaxation estimators and achieves an improved
DOA estimation performance. Moreover, the proposed method
possesses an enhanced frequency resolution compared to
sparse signal reconstruction techniques. We remark that the
design of such an estimator can be easily generalized from the
uniform linear array to other array geometries, such as partially
shift-invariant arrays and partially augmentable arrays, by
incorporating the appropriate SPARROW formulations [23].

The method we propose combines the SPARROW estimator
and the PR framework in a separate “two-step” manner. For
future work, it is of great interest to search for an estimator
that achieves the goal in a “one-step” manner. Furthermore,
we choose the regularization parameter based on the original
heuristic formula reported in [10]. By experimentally
designating a heuristic formula for the proposed estimator, we
could potentially further improve the estimation performance.
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