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Direction-of-Arrival (DOA) estimation

θ

source 1 source L

· · ·

sensor array

• Classic problem in e.g. wireless communication, seismic

exploration, automatic monitoring

• Numerous approaches:

maximum likelihood estimator [Stoica, 1989], root-MUSIC [Rao,

1989], ESPRIT [Paulraj, Roy, Kailath, 1989], ...

• Very difficult: correlated sources and low sample size

◦ Partial Relaxation (PR) [Trinh-Hoang, 2018]

◦ SPARse ROW-norm reconstruction (SPARROW) [Steffens, 2018]
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Signal model

• M omnidirectional sensors, narrowband signals located in

the farfield of the array

• L source signals with DOAs θ = [θ1, . . . , θL]
⊺ (L is known)

• Received signals

y(t) = A(θ)x(t) + n(t)

◦ y(t) ∈ CM received signal vector

◦ x(t) ∈ CL source signal vector

◦ A(θ) = [a(θ1), . . . ,a(θL)] ∈ CM×L steering matrix

◦ a(θi) = [1, e−jπ sin(θi), . . . , e−j(M−1)π sin(θi)]⊺ sensor array

responses for DOA θi with uniform linear array

◦ n(t) ∈ CM
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Signal model

• M omnidirectional sensors, narrowband signals located in

the farfield of the array

• L source signals with DOAs θ = [θ1, . . . , θL]
⊺ (L is known)

• Multiple snapshots

Y = A(θ)X +N

◦ Y = [y(1), . . . ,y(N)]: received signal matrix

◦ X = [x(1), . . . ,x(N)]: source signal matrix

◦ N = [n(1), . . . ,n(N)]: noise matrix
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Signal model

• Source signals: stationary process

◦ E{x(t)} = 0

◦ source covariance matrix Rx = E{x(t)x(t)H}
• Noise: i.i.d. white Gaussian

◦ Rn = E{n(t)n(t)H} = σ2IM
◦ σ2: noise power at each sensor

• Received signals

◦ Ry = E{y(t)y(t)H} = A(θ)RxA(θ)H + σ2IM
◦ R̂y = 1

NY Y H
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Partial Relaxation

• Conventional

θ̂ = argmin
θ

f(A(θ),Y )

• PR [Trinh-Hoang, 2018]

θ̂ = L argmin
θ

min
B∈CM×(L−1)

f(a(θ),B,Y )

where L argmin : take L deepest minima

◦ degrade severely for highly correlated sources or low sample

size
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SPARROW

• Sparse signal reconstruction

min
Z∈CK×N

1
2 ||A(ν)Z − Y ||2F + λ

√
N ||Z||2,1 (1)

◦ ν = {ν1, . . . , νK}: sampled FOV with K ≫ L

◦ Z = [z1, . . . ,zK ]⊺: row-wise sparse signal matrix

◦ A(ν) = [a(ν1), . . . ,a(νK)] ∈ CM×K : overcomplete

dictionary matrix

◦ ℓ2,1-mixed-norm

∥Z∥2,1 =
∑K

k=1∥zk∥2

◦ λ > 0: regularization parameter inducing row-sparsity in Z

• On-grid assumption: θi ∈ ν, for i = 1, . . . , L

• Jointly estimating the sources: robust to correlated sources
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SPARROW

• Sparse signal reconstruction

min
Z∈CK×N

1
2 ||A(ν)Z − Y ||2F + λ

√
N ||Z||2,1 (1)

• Problem (1) is equivalent to the convex problem

min
S∈DK

+

Tr
(
(A(ν)SA(ν)H + λIM )−1R̂y

)
+Tr(S) (2)

◦ DK
+ : the set of K ×K nonnegative diagonal matrices.

• The solutions of (1) and (2) are related by

Ẑ = ŜA(ν)H(A(ν)ŜA(ν)H + λIM )−1Y ,

ŝk = 1√
N
||ẑk||2 for k = 1, 2, . . . ,K,

with s1, . . . , sK ≥ 0 being the diagonal entries of S.
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Gridless SPARROW

• Uniform linear array with M sensors

◦ A(ν) has a Vandemonde structure

◦ S nonnegative diagonal

◦ positive semidefinite Toeplitz

T = A(ν)SA(ν)H =
∑K

k=1 ska(νk)a(νk)
H ∈ T M

+

◦ T M
+ : the set of M ×M positive semidefinite Toeplitz

matrices

• Gridless SPARROW [Steffens, 2018]

T̂ = argmin
T∈T M

+

Tr
(
(T + λIM )−1R̂y

)
+

1

M
Tr(T ) (3)

◦ Vandemonde decomposition on T̂ to recover DOAs
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Proposed method

• Step 1: solve gridless SPARROW with a reduced

regularization parameter

T̂ = argmin
T∈T M

+

Tr
(
(T + λIM )−1R̂y

)
+ 1

M Tr(T )

◦ λ = Cλ

√
σ2M logM︸ ︷︷ ︸
empirical

, Cλ = 0.4 ∼ 0.6

◦ reduced bias

• Step 2: use PR on T̂ to recover DOAs

◦ extract signal subspace from T̂
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Simulation results

• Setup:

◦ Signal-to-noise ratio: SNR=1/σ2

◦ Root-mean-square-error:

RMSE =
√

1
NRL

∑NR

i=1

∑L
l=1(θ̂

(i)
l − θl)2,

◦ Monte-Carlo runs: 200

• Estimators:

◦ The proposed method

◦ root-MUSIC

◦ PR

◦ SPARROW with the original regularization (Cλ = 1)

◦ SPARROW with the same regularization as the proposed

method (Cλ = 0.4)

◦ root-MUSIC applied to the Toeplitz matrix solution with

regularization Cλ = 0.4
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Simualtion 1: few snapshots

• Two uncorrelated sources at −30◦ and 30◦

• Snapshots N = 3, uniform linear array of size M = 6

0 2 4 6 8 10 12 14 16 18 20

100

101

SNR in dB

R
M
S
E
in

d
eg
re
e

CRB PR-CRB PR-UCF
root-MUSIC SPARROW(Cλ = 1) SP-PR-UCF

SP-root-MUSIC SPARROW(Cλ = 0.4)

Fig. 1. RMSE vs SNR
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Simualtion 2: highly-correlated source signals

• Two sources at 45◦ and 50◦, correlation factor ρ = 0.95

• Uniform linear array of size M = 10
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Fig. 2. RMSE vs SNR with snapshots N = 40
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Simualtion 2: highly-correlated source signals

• Two sources at 45◦ and 50◦, correlation factor ρ = 0.95

• Uniform linear array of size M = 10
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Fig. 3. RMSE vs N with SNR= 5 dB
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Simualtion 2: highly-correlated source signals

• Two sources at 45◦ and 50◦, correlation factor ρ = 0.95

• Uniform linear array of size M = 10
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Fig. 4. RMSE vs N with SNR= 3 dB
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Conclusion

• Take away:

◦ Step 1 gridless SPARROW, Step 2 PR

◦ robust w.r.t. highly correlated sources and low sample size,

superior than both PR and SPARROW

• Generalizes from uniform linear arrays to other array

geometries
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