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Q1: What is the logical rule generating this sequence?

… 1101111001101001011111001111111 …

Q2: Can neural networks learn this logical rule from the data?

2

Q3: How can the rule then be read out from the trained network?
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Cellular automata (CA)
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Q1: What is the logical rule generating this sequence?
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Elementary CA of rule 30

… 1101111001101001011111001111111 …

f = (x−1 ⊙ ¬x0 ⊙ ¬x1) ⊕ (¬x−1 ⊙ x1) ⊕ (¬x−1 ⊙ x0)



Q1: What is the logical rule generating this sequence?
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Q2: Can neural networks learn the logical rule from the data?

Theorem: 
Neural networks can learn the transition rule from CA evolution data.  

Q3: How can the rule then be read out from the trained network?
Proposed an extraction procedure.

Theorem: 
Every CA is a logical machine, namely in Lukasiewicz propositional logic.



Definition [Chang, 1958]:  
A many-valued (MV) algebra is a structure  consisting of 
• a nonempty set    
• a constant  
• a binary operation   
• a unary operation  
satisfying the following axioms: 

 
 

 
 

 
 

𝒜 = ⟨A, ⊕ , ¬,0⟩
A

0 ∈ A
⊕

¬

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
x ⊕ y = y ⊕ x
x ⊕ 0 = x
¬¬x = x

x ⊕ ¬0 = ¬0
¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x
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add : Boolean algebrax ⊕ x = x



Definition: 
Let  and . An MV term is a string over  arising from a 
finite number of applications of the operations  and  as follows. The elements  and 

, are MV terms. 
• If the string  is an MV term, then  is also an MV term.  
• If the strings  and  are MV terms, then  is also an MV term. 

n ∈ ℕ Sn = {(, ),0,¬, ⊕ ,x1, …, xn} Sn
¬ ⊕ 0

xi, i = 1,…, n
τ ¬τ
τ γ (τ ⊕ γ)
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Examples: x1, ¬x2, x1 ⊕ ¬x2, ¬¬x3
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Definition: 
Let  be an MV term and  an MV algebra. The term function 

 
is obtained by interpreting the symbols  and  according to how they are specified in . 

τ(x1, …, xn) 𝒜 = ⟨A, ⊕ , ¬,0⟩
τ𝒜 : An → A

⊕ ¬ 𝒜
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Definition: 
Let  be an MV term and  an MV algebra. The term function 

 
is obtained by interpreting the symbols  and  according to how they are specified in . 

τ(x1, …, xn) 𝒜 = ⟨A, ⊕ , ¬,0⟩
τ𝒜 : An → A

⊕ ¬ 𝒜

Examples: the Boolean algebra  ℬ = {{0,1}, ⊕ , ¬,0} τℬ : {0,1}n → {0,1}



Definition: 
Consider the unit interval , define 

 
and 

  
for . It can be verified that the structure 

 
is an MV algebra. We further define the operation  

.

[0,1]
x ⊕ y = min{1, x + y}

¬x = 1 − x
x, y ∈ [0,1]

ℐ = ⟨[0,1], ⊕ , ¬,0,⟩

x ⊙ y := ¬(¬x ⊕ ¬y) = max{0, x + y − 1}

Completeness theorem [Chang, 1958, 1959]: 
 An equation holds in every MV algebra if and only if it holds in .ℐ
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General functions  ?


How do term functions in MV logic look like?

f : [0,1]n → [0,1]

Every binary truth table has an associated Boolean formula e.g. [Rosen, 2012]



How do term functions in MV logic look like?

Theorem [McNaughton, 1951]: 
 Consider the standard MV algebra . Let . For a function 

 to have an associated MV term  such that  on , it is 
necessary and sufficient that 
1.  is continuous with respect to the natural topology on  
2. there exist linear functions  with integer coefficients, i.e.,  

 
where , for , such that for every , there is a 

 with .

ℐ = ⟨[0,1], ⊕ , ¬,0⟩ n ∈ ℕ
fc : [0,1]n → [0,1] τ τℐ = fc [0,1]n

fc [0,1]n

p1, …, pℓ
pj(x1, …, xn) = mj1x1 + ⋯ + mjnxn + bj, j = 1,…, ℓ,

mj1, …, mjn, bj ∈ ℤ j = 1,…, ℓ x ∈ [0,1]n

j ∈ {1,…, ℓ} fc(x) = pj(x)

continuous piecewise linear functions with integer coefficients
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Theorem: 
Every CA is a logical machine, namely in Lukasiewicz propositional logic.

Simplex interpolation
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Theorem: 
Neural networks can learn the transition rule from CA evolution data.  



Deep ReLU networks can realize MV term functions
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affine maps: 

nonlinearity: 

Φ = WL ∘ ρ ∘ WL−1 ∘ … ∘ W2 ∘ ρ ∘ W1

Wℓ = Aℓx + bℓ : ℝNℓ−1 → ℝNℓ, ℓ ∈ {1,2,…, L}

ρ = max{0,x}
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Building blocks: 

   


    


Φ¬ = 1 − x

Φ⊕(x, y) = (W⊕
2 ∘ ρ ∘ W⊕

1 )(x, y)

Φ⊙(x, y) = (W⊙
2 ∘ ρ ∘ W⊙

1 )(x, y)

Compositions of ReLU nets are ReLU nets

W(2)
L2

∘ ρ ∘ ⋯ ∘ ρ ∘ W(2)
1

Φ(2)

∘ W(1)
L1

∘ ρ ∘ ⋯ ∘ ρ ∘ W(1)
1

Φ(1)
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Building blocks: 

   


    


Φ¬ = 1 − x

Φ⊕(x, y) = (W⊕
2 ∘ ρ ∘ W⊕

1 )(x, y)

Φ⊙(x, y) = (W⊙
2 ∘ ρ ∘ W⊙

1 )(x, y)

Example  τ = (x ⊕ x) ⊙ ¬y

 





 Compose 

x ⊕ x = W⊕
2 ∘ ρ ∘ ((−1 −1) (x

x) + 1)
¬y = − ρ(y) + ρ(−y) + 1

W⊙
2 ∘ ρ ∘ W⊙

1 ∘ (W⊕
2 ∘ ρ ∘ (−2x + 1)

−ρ(y) + ρ(−y) + 1)
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Extract MV terms from trained networks

Convert the learned truth functions to algebraic formulae, thereby extracting the ``logic'' behind data



MV term functions are , but





e.g. 

f : [0,1]n → [0,1]

ρ ∘ W : [0,1]n → ℝ+,

ρ(3x) : [0,1] → [0,3]
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But extraction isn’t so easy …

We want to proceed layer-by-layer, neuron-by-neuron 


to exploit the compositional structure of ReLU networks


🤔

do not have an MV term!



Step 1: From -neurons to -neuronsρ σ
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Step 1: From -neurons to -neuronsρ σ
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 for ρ(x) = σ(x) + σ(x − 1) + σ(x − 2), x ∈ [0,3]



Step 1: From -neurons to -neuronsρ σ
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Can always go back

σ(x) = ρ(x) − ρ(x − 1),  for x ∈ ℝ



Step 2: Extract MV terms from individual -neuronsσ
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Lemma [Rose and Rosser, 1958; Mundici, 1994]

E.g., σ(x1 − x2 + x3 − 1)

Overall:

σ(x1 − x2 + x3 − 1) : x1 ⊙ (x3 ⊙ ¬x2)

σ(x1 − x2 + x3 − 1) = (σ(−x2 + x3 − 1) ⊕ x1) ⊙ σ(−x2 + x3)

σ(−x2 + x3) = (σ(−x2) ⊕ x3) ⊙ σ(−x2 + 1)

σ(−x2 + x3 − 1) = (σ(−x2 − 1) ⊕ x3) ⊙ σ(−x2)

σ(−x2 + 1) = 1 − σ(x2) = ¬x2



The extraction procedure

Step 1: Convert into equivalent -network


Step 2: Extract MV terms from individual neurons


Step 3: Compose

σ
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E.g., σ(2x − y + 1) : x ⊕ x ⊕ ¬y
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Theorem: 
Every CA is a logical machine, namely in Lukasiewicz propositional logic.

Q2: Can neural networks learn the logical rule from the data?

Theorem: 
Neural networks can learn the transition rule from CA evolution data.  

Q3: How can the rule then be read out from the trained network?

Proposed an extraction procedure.


