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Q1: What is the logical rule generating this sequence?

... 1101111001101001011111001111111 ...

Q2: Can neural networks learn this logical rule from the data?

Q3: How can the rule then be read out from the trained network?
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Cellular automata (CA)

Cellular space: Z¢
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Cellular automata (CA
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Q1: What is the logical rule generating this sequence?

1101111001101001011111001111111
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Q1: What is the logical rule generating this sequence?

Theorem:

Every CA is a logical machine, namely in Lukasiewicz propositional logic.

Q2: Can neural networks learn the logical rule from the data?

Theorem:

Neural networks can learn the transition rule from CA evolution data.

Q3: How can the rule then be read out from the trained network?

Proposed an extraction procedure.
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Definition [Chang, 1958]:

A many-valued (MV) algebra is a structure &/ = (A, @ , —,0) consisting of
e a nonempty set A

e aconstant) € A

® a binary operation &

® a unary operation —
satisfying the following axioms:

xOOYD)=xDYy) Dz

xPy=ybx
xP0=x
x@ 0 = -0

(" xPy)Dy="("yDx)Px

add x € x = x : Boolean algebra



Definition:
Letn € Nand S, = {(,),0,7, D ,x,...,x,}. An MV term is a string over S, arising from a

finite number of applications of the operations = and @ as follows. The elements () and
x,i=1,...,n, are MV terms.

o |f the string 7 is an MV term, then — 7 is also an MV term.

e If the strings 7 and y are MV terms, then (7 @ y) is also an MV term.

Examples: x{, 7Xx,, X; @ 7X,, 77X;3



Definition:
Letn € Nand S, = {(,),0,7, D ,x,...,x,}. An MV term is a string over S, arising from a

finite number of applications of the operations = and @ as follows. The elements () and
x,i=1,...,n, are MV terms.

o |f the string 7 is an MV term, then — 7 is also an MV term.

e If the strings 7 and y are MV terms, then (7 @ y) is also an MV term.

Definition:
Let 7(x{, ..., Xx,) be an MV term and &f = (A, @, —,0) an MV algebra. The term function

AT S A
is obtained by interpreting the symbols @ and — according to how they are specified in &.




Definition:

Letn € Nand $, = {(,),0,, D ,x;, ..
finite number of applications of the operations = and @ as follows. The elements () and
x,i=1,...,n, are MV terms.

., X, 1. An MV term is a string over §, arising from a

o |f the string 7 is an MV term, then — 7 is also an MV term.
e If the strings 7 and y are MV terms, then (7 @ y) is also an MV term.

Definition:
Let 7(x;, ..

.,X,) be an MV term and &/ = (A, @ ,—,0) an MV algebra. The term function
AT S A
is obtained by interpreting the symbols @ and — according to how they are specified in &.

Examples: the Boolean algebra & = {{0,1}, ®,-,0} % : {0,1}" — {0,1)

L_1X0T1

111

110

101

100

011

010

001

000

f(x—h Lo, 551)

0

0

0

1

1

1

1

0

9




Definition:
Consider the unit interval [0, 1], define
x®y=min{l, x + y}

and
x=1-—x
for x,y € [0,1]. It can be verified that the structure
J =([0,1], & ,-,0,)
Is an MV algebra. We further define the operation
xXQy:="(x@Py)=max{0, x+y—1}.

Completeness theorem [Chang, 1958, 1959]:

An equation holds in every MV algebra if and only if it holds in 7.
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Every binary truth table has an associated Boolean formula e.g. [Rosen, 2012]

General functions f : [0,1]" — [0,1] ?

How do term functions in MV logic look like?
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How do term functions in MV logic look like?

Theorem [McNaughton, 1951]:
Consider the standard MV algebra .¥ = ([0,1], & ,—,0). Let n € N. For a function

f.:10,11" = [0,1] to have an associated MV term 7 such that T f.on[0,1]% itis
necessary and sufficient that
1. /. is continuous with respect to the natural topology on [0,1]"

2. there exist linear functions py, ..., p, with integer coefficients, i.e.,
p](xl, ...,Xn) — mjlxl + *e° + m]n.xn + b], ] — 1,..., f,

where m1, ..., M, bj e Z,forj=1,...,7, such that for every x € [0,1]", there is a
JE€{L....,0} with f (x) = p;(x).

continuous piecewise linear functions with integer coefficients
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Simplex interpolation

Theorem:

Every CA is a logical machine, namely in Lukasiewicz propositional logic.
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Theorem:

eural networks can learn the transition rule from CA evolution data.




Deep RelLU networks can realize MV term functions

(I):WLOIOOWL_IO...OWZOPOWI

affine maps: W, = A,x + b, : RV — RY, ¢ € {1,2,...,L}

- @ ‘x nonlinearity: p = max{0,x}
B e ® p(z)
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Building blocks:
O '=1-—x

DO(x,y) = (W2 o p o WE)(x, y)

@ '\ D(x,y) = (WQQ °p e WIG)(XJ’)
N
@ @ / Compositions of ReLU nets are ReLU nets

2 2 | |
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Building blocks:
O '=1-—x

DO(x,y) = (W2 o p o WE)(x, y)

@ ‘x DO (x, y) = (W2® °p e WIG)(X,)/)
---Q---Qf Examplez = (x @ x) © -y

x@x=Weaopo ((-1 ~1) (§)+1)

y=—py)+p(=y) +1

WPopo(—2x+1
ComposeWzG)opongo( 2 ope(=2 ))

—p(y) + p(—y) + 1
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Extract MV terms from trained networks

Convert the learned truth functions to algebraic formulae, thereby extracting the logic'' behind data
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~

But extraction isn’t so easy ... \"J

-

We want to proceed layer-by-layer, neuron-by-neuron

to exploit the compositional structure of ReLU networks

MV term functions are f : [0,1]" — [0,1], but
peW:[0,1]" = R™,

e.g. p(3x) : 10,1] — [0,3]

\

do not have an MV term!
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Step 1: From p-neurons to o-neurons

19




Step 1: From p-neurons to o-neurons

px)=o0cx)+ox—1)+o(x—2), forx € |0,3]
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Step 1: From p-neurons to o-neurons

Can always go back
o(x) =pkx)—pkx—-1), forx e R

19



Step 2: Extract MV terms from individual o-neurons

Lemma [Rose and Rosser, 1958; Mundici, 1994]

E.g., G(XI — Xy + X3 — 1)
o) = X, + 53— 1) = (6(=x, + 33 = 1) B)) © 6(=x, + x3)

o(=x; +f)— 1) = (6(=x, — 1) ® {3 © o(—x,)
(=%, +(1) = (6(=x) B © o(—x, + 1)

o-(—@+ 1) =1-0(x,) =@
Overall;
o(xX; =X +x3—1): %, © (x5 © 7x,)

20



The extraction procedure

Step 1: Convert into equivalent o-network

Step 2: Extract MV terms from individual neurons
E.g,0(2x—y+1):x¢€

Step 3: Compose

4
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Theorem:

Every CA is a logical machine, namely in Lukasiewicz propositional logic.

Theorem:
Neural networks can learn the transition rule from CA evolution data.

Proposed an extraction procedure.
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